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Abstract
For complex two-dimensional Riemannian spaces every classical or quantum
second-order superintegrable system can be obtained from a single generic
3-parameter potential on the complex 2-sphere by delicate limit operations
and through Stäckel transforms between manifolds. Here we derive families of
finite- and infinite-dimensional irreducible representations of the corresponding
quadratic quantum algebra for the 2-sphere and point out their role in explaining
the degeneracy of the energy eigenspaces corresponding to bound state and
continuous spectra of quantum and wave equation analogs of this system. The
algebra is exactly the one that describes the Wilson and Racah polynomials in
their full generality.

PACS numbers: 02.10.De, 03.65.−w, 03.65.−Fd, 02.30.Gp

1. Introduction

For any complex 2D Riemannian manifold we can always find local coordinates x, y such that
the classical Hamiltonian takes the form

H = 1

λ(x, y)

(
p2

1 + p2
2

)
+ V (x, y),

i.e., the complex metric is ds2 = λ(x, y)(dx2 + dy2). This system is superintegrable for some
potential V if it admits three functionally independent constants of the motion (the maximum
number possible) that are polynomials in the momenta pj . It is second-order superintegrable
if the constants of the motion are quadratic, i.e., of the form L = ∑

aji(x, y)pjpi + W(x, y).
(By taking various real restrictions of the complex system, we can obtain real superintegrable
systems, e.g., the complex 2-sphere restricts to the real 2-sphere, to the hyperboloid of two
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sheets and the hyperboloid of one sheet.) There is an analogous definition of second-order
superintegrability for quantum systems with the Schrödinger operator

H = 1

λ(x, y)

(
∂2

1 + ∂2
2

)
+ V (x, y)

and symmetry operators L = ∑
∂j (a

ji(x, y))∂i + W(x, y), i.e. [H.L] = 0, and these systems
correspond one-to-one. As demonstrated in the literature, these systems have remarkable
properties, including multiseparability (which implies multi-integrability, i.e., integrability
in distinct ways) [1–13], except for one isolated Euclidean system [14], and the existence
of a quadratic algebra of symmetries that closes at order 6. There has been recent intense
activity to uncover the structure of second-order-superintegrable systems in n dimensions
and to classify them. For the easiest case, n = 2, the classification is complete: [15–20],
and for n = 3 it is nearly complete for nondegenerate potentials [21, 22]. A basic result
in 2D is that every potential V in a superintegrable system that depends on at least one
multiplicative parameter is a restriction of a nondegenerate potential. (This last fact is no
longer true for 3D superintegrable systems.) However, upon restriction the structure of the
quadratic algebra can change and closure may be achieved at less than sixth order. There is
an invertible mapping, called the Stäckel transform [23], or coupling constant metamorphosis
[24], which takes a superintegrable system on one manifold to a superintegrable system on
another manifold. Thus, although there is a multiplicity of superintegrable systems, it can
be shown that all such systems are equivalent under the Stäckel transform to exactly seven
nondegenerate Stäckel inequivalent systems, six on complex Euclidean space and one on the
complex 2-sphere. (There are other nondegenerate superintegrable systems on the 2-sphere,
but each is equivalent to a Euclidean system under the Stäckel transform, and some other
Euclidean superintegrable systems are equivalent to one of the six already mentioned.)

Another important fact about 2D systems is that all systems can be obtained from
one generic superintegrable system on the complex 2-sphere by appropriately chosen limit
processes, e.g. [25, 26]. The use of these processes in separation of variables methods for
wave and Helmholtz equations in n dimensions was pioneered by Bô cher [27]. (We note that
for n = 3 the situation is much more complicated. It is no longer true that all quadratically
superintegrable systems are limit forms or restrictions of one system, and the algebra of
symmetries does not always close.)

For n = 2 the generic sphere system S2 corresponds to the nondegenerate potential

V =
1
4 − a2

s2
1

+
1
4 − b2

s2
2

+
1
4 − c2

s2
3

, (1)

where s2
1 + s2

2 + s2
3 = 1. This nondegenerate superintegrable system is

H = J 2
1 + J 2

2 + J 2
3 + V (x, y) = H0 + V, (2)

where J3 = s1∂s2 − s2∂s1 and J2, J3 are obtained by cyclic permutations of the indices
1, 2, 3. This system is uniquely characterized by the fact that it admits multiplicative
separation in generic Jacobi elliptic coordinates on the 2-sphere in the quantum case
(and additive separation in the classical case) and is the only nondegenerate system on
the sphere to admit separation in these coordinates. We choose a basis for the three-
dimensional space of second-order symmetries in the symmetric form L1, L2, L3, where
L1 = J 2

3 + W1, L2 = J 2
1 + W2, L3 = J 2

2 + W3,H = L1 + L2 + L3 + a1 + a2 + a3. Here,
V = W1 + W2 + W3 + a1 + a2 + a3 and

a1 = 1
4 − c2, a2 = 1

4 − a2, a3 = 1
4 − b2
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and the functions Wj can easily be computed. The algebra generated by these symmetries
and their commutators must close at order 6. The structure equations for S2 can be put in the
symmetric form [16]

[Li, R] = 4{Li, Lk} − 4{Li, Lj } − (8 + 16aj )Lj + (8 + 16ak)Lk + 8(aj − ak), (3)

R2 = 8
3 {L1, L2, L3} − (16a1 + 12)L2

1 − (16a2 + 12)L2
2 − (16a3 + 12)L2

3

+ 52
3 ({L1, L2} + {L2, L3} + {L3, L1}) + 1

3 (16 + 176a1)L1

+ 1
3 (16 + 176a2)L2 + 1

3 (16 + 176a3)L3 + 32
3 (a1 + a2 + a3)

+ 48(a1a2 + a2a3 + a3a1) + 64a1a2a3. (4)

Here i, j, k are chosen such that εijk = 1 where ε is the pure skew-symmetric tensor,
R = [L1, L2] and {Li, Lj } = LiLj + LjLi with an analogous definition of {L1, L2, L3} as a
symmetrized sum of six terms. In practice, we will substitute L3 = H −L1 −L2 −a1 −a2 −a3

into these equations.
Because of the unique role of this system it is important to establish the physically

important representations of the quadratic algebra associated with S2. It has already been
pointed out by several authors that there are relation between the quadratic algebras of some
2D second-order superintegrable systems and special cases of the quadratic Racah algebra
QR(3) [10–12, 28–34]. Here we show that the generic 2-sphere system is unique in the fact
that its quadratic algebra coincides with the full Racah algebra. Further, since our system
is taken in a complex form, it also yields the full Wilson polynomial algebraic structure, a
structure associated with infinite-dimensional representations of the quadratic algebra.

Daskaloyannis, e.g. [12, 31, 32], has developed a deformed oscillator approach
to exhibiting the finite-dimensional irreducible representations of quadratic algebras.
However, rather than adopt this elegant approach here, we construct families of irreducible
representations from first principles. This is partly because we are interested in infinite, as
well as finite-dimensional representations. Why are infinite-dimensional representations of
the quadratic algebra important? In the usual applications of the quadratic algebra structure
one notes that each eigenspace of the Schrödinger operator (corresponding to a discrete
eigenvalue) is finite dimensional and invariant under the quadratic algebra, so that finite-
dimensional irreducible representations of the quadratic algebra can be used to understand
and explain the degeneracy of the eigenspace. Little attention is paid to the continuous
spectrum because, strictly speaking, the eigenvectors corresponding to an eigenvalue in
the continuous spectrum are not normalizable. However, there are other interpretations of
the quadratic algebra that make clear the physical and mathematical importance of these,
apparently, continuous spectrum cases and their relevance to infinite-dimensional irreducible
representations of the quadratic algebra.

To clarify the situation let us consider the superintegrable system on the complex 2-sphere
in the special case with potential (1) and a = b = c = 1

2 , i.e., S2 with the potential switched
off. The structure of the algebra has changed since the first-order operators J1, J2, J3 are now
symmetries and they generate the algebra. This system has been studied in detail. In the case
of the real 2-sphere one usually considers the eigenvalue equation in the form(

J 2
1 + J 2

2 + J 2
3

)
� = −�(� + 1)�,

where � is a nonnegative integer, and restricts attention to the (2�+ 1)-dimensional eigenspace
where H = �(� + 1). This corresponds to the finite-dimensional representation D(�) of the
symmetry algebra so(3) generated by the first-order symmetry operators. The basis functions
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are spherical harmonics in a J3-basis, and products of Lamé polynomials in an J 2
1 + r2J 2

2 -basis
with 0 < r2 < 1. This is a very familiar case [35].

Now take a different real form: s1 = ix1, s2 = ix2, s3 = x0, where x1, x2 are real and
x0 > 0. This is the upper sheet of the 2-sheet hyperboloid x2

0 − x2
1 − x2

2 = 1. Now the
Schrödinger equation can be written as(

K2
1 + K2

2 − J 2
3

)
� = �(� + 1)�, (5)

where a basis for the first-order symmetries is

K1 = x0∂x1 + x1∂x0 , K2 = x0∂x2 + x2∂x0 , J3 = x1∂x2 − x2∂x1 .

The first-order symmetries generate the Lie algebra so(2, 1). In [36] two of the authors studied
this equation in the case � = − 1

2 + iρ, 0 < ρ < ∞, corresponding to the principle series of
single-valued representations of so(2, 1). If one considers the Schrödinger operator as acting
on the hyperboloid with the standard measure then this choice of � corresponds to a value in
the continuous spectrum and there are no normalizable solutions. However, we showed that
we could construct a model of the (infinite-dimensional) principle series in terms of a Hilbert
space of functions on the unit circle and an intertwining operator that maps this Hilbert space
into the solution space of (5). This effectively induced a Hilbert space structure on this single
eigenspace with a fixed eigenvalue �(� + 1). A rich structure emerged with nine types of
orthogonal bases, corresponding to nine types of variable separation.

In paper [37], we studied the equation(
K2

1 + K2
2 − J 2

3

)
� = (

ν2 − 1
4

)
�, 0 � ν. (6)

Again, if one considers the Schrödinger operator as acting on the hyperboloid with the standard
measure then this choice of eigenvalue corresponds to the continuous spectrum and there are no
normalizable solutions. However, we showed that we could construct a model of the (infinite-
dimensional) negative discrete series D−

ν−1/2 of the universal covering group of SL(2, R) in
terms of a Hilbert space of functions on the positive real line and an intertwining operator
that mapped this Hilbert space into the solution space of (6). Again this effectively induced a
Hilbert space structure on this single eigenspace with the fixed eigenvalue given by ν. Here
there were nine types of orthogonal bases, corresponding to nine types of variable separation.
This equation is of particular physical interest because a change of variables and gauge
transforms it to the Euler–Poisson–Darboux (EPD) equation, an equation commonly studied
in electromagnetic theory(

∂tt − ∂rr − 1

r
∂r +

ν2

r2

)
� = 0. (7)

In this paper, the authors showed that one could complexify the EPD equation and just consider
locally analytic solutions for fixed ν with no Hilbert space structure. However, raising and
lowering operators and separable solutions still existed so the formal algebraic relations still
gave useful information. This same idea was used by Viswanathan [38] to derive generating
functions for Gegenbauer polynomials.

Now we consider the general potential (1) for S2. This potential was studied in [39] for the
real 2-sphere and its n-dimensional analog in [40] for the n-sphere. The spectrum is discrete
and the eigenspaces are all finite dimensional. In [41], the corresponding potential (called
the singular oscillator potential) was studied on the upper sheet of the two-sheet hyperboloid
for appropriate values of a, b, c. There, bound states were found, but it was remarked that
there was also a continuous spectrum. In particular, the Schrödinger eigenvalue equation
separates in spherical coordinates and the separated equations are 1D Schrödinger equations
with Pöschl–Teller potential. The bound states correspond to Pöschl–Teller bound states,
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whereas the continuum spectrum states correspond to Pöschl–Teller scattering states. These
Pöschl–Teller states are studied in [42] and, particularly in [43] where the group-theoretic
description of the scattering states is spelled out. The connection with our problem is that a
continuum eigenspace for system S2 on the hyperboloid can be considered as supporting an
infinite-dimensional irreducible representation of the quadratic algebra.

A final issue is that under a Stäckel transform a superintegrable system on one manifold
is mapped to a superintegrable system on another manifold. Under this transform the original
quadratic algebra maps to a new quadratic algebra which is isomorphic to the original, except
that the parameters a, b, c,H are subject to a linear transformation. Formal eigenfunctions
map to formal eigenfunctions. However, the measures on the manifolds are different so that,
for example, bound states may not map to bound states.

In the following sections, we start from first principles, work out some families of finite-
and infinite-dimensional representations of the algebra S2 and relate them to the Wilson and
Racah polynomials in their full generality. In essence, these polynomial families provide
one-variable models of the quadratic algebra action.

2. The structure equations for S2

We look first for a family of irreducible finite-dimensional representations of this quadratic
algebra that corresponds to the standard (m + 1)-degenerate bound states of the Schrödinger
eigenvalue equation for S2 . It is easy to show that corresponding to a fixed energy eigenvalue
H it is not possible to find nontrivial representations where the eigenvalues of L1 take the linear
form λn = An + B, n = 0, 1, . . . . Indeed, this is incompatible with equations (3). However,
we know that the quantum Schrödinger equation separates in spherical coordinates, and that
corresponding to a fixed energy eigenvalue H the eigenvalues of L1 take the quadratic form

λn = −[2n + B]2 + K, n = 0, 1, . . . , m, (8)

where B = a + b + 1 and K is a constant that we will compute. These are not the only
irreducible representations of this algebra but they are of immediate physical relevance.

Indeed in terms of standard spherical coordinates the Schrödinger equation looks like[
∂2

∂2
θ

+ cot θ
∂

∂θ
+

1

sin2 θ

∂2

∂φ2
+

1
4 − a2

sin2 θ cos2 φ
+

1
4 − b2

sin2 θ sin2 φ
+

1
4 − c2

cos2 θ

]
� = E�.

We apply separation of variables and look for solutions � = �(θ)�(φ). The separation
equations (corresponding to diagonalization of L1) are(

∂2

∂2
φ

+
1
4 − a2

cos2 φ
+

1
4 − b2

sin2 φ

)
�(φ) = λ�(φ),

(
∂2

∂2
θ

+
1
4 − c2

cos2 θ
+

λ

sin2 θ

)
�(θ) = E�(θ).

The finite solutions have the form

(cos θ)c+ 1
2 (sin θ)2n+a+b+ 3

2 P
(2n+a+b+1,c)
k (cos 2θ)(sin φ)a+ 1

2 (cos φ)b+ 1
2 P (a,b)

n (cos 2φ),

where the eigenvalues are

λ = −(2n + a + b + 1)2, E = 1
4 − (2(k + n) + a + b + c + 1)2

and P (a,b)
n (z) is a Jacobi polynomial. This illustrates (8).

We will use the abstract structure equations to list the corresponding representations and
compute the action of L2 on an L1-basis. We start, with greater generality, by assuming that
there is a basis {fn : n = 0, 1, . . .} for the representation space such that

L1fn = (K − [2n + B]2)fn, L2fn =
∑

�

C(�, n)f�. (9)
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Here, B is not yet fixed. We do not require that the basis be orthonormal. From these
assumptions we can compute the action of R and [L1, R] on the basis. Indeed,

Rfn = [L1, L2]fn =
∑

�

4(n − �)(n + � + B)C(�, n)f�, (10)

[L1, R]fn =
∑

�

16(n − �)2(n + � + B)2C(�, n)f�. (11)

On the other hand, from (3) with i = 1, j = 2, k = 3 we have

[L1, R]fn = 8
∑

�

([2� + B]2 + [2n + B]2 − 2K + 2a2 + 2b2 − 3)C(�, n)f�

+ 8

[
−([2n + B]2 − K)2 + ([2n + B]2 − K)

(
9

4
− a2 − 3b2 − c2 − H

)

+

(
3

2
− 2b2

) (
H − 3

4
+ a2 + b2 + c2

)
+ b2 − a2

]
fn. (12)

Now we equate (11) and (12). For n �= �, the equating coefficients of f� in the resulting
identity yield the condition

C(�, n)
[

1
8 ([2� + B]2 − [2n + B]2)2 − [2� + B]2 − [2n + B]2 + 3 + 2(K − a2 − b2)

] = 0.

We see from this that in order for C(�, n) �= 0 we must have � = n, n±1 and K = − 1
2 +a2 +b2.

Equating coefficients of fn in the identity, we can solve for C(n, n) and obtain

C(n, n) = w

2
+

(
H

2
+

3

8
− a2

2
+

b2

2
+

c2

2

)
+

Q1

w
, (13)

where w = (2n + B + 1)(2n + B − 1) and

Q1 = 1

2

(
H − 3

4
+ a2 + b2 + c2)(−a2 + b2

)
+

a4

2
− a2

4
− b4

2
+

b2

4
.

It is straightforward to show that the action of [L2, R] on the basis is

[L2, R]fn =
∑
�,j

K(n, j, �)C(j, �)C(�, n)fj , (14)

where

K(n, j, �) = [2n + B]2 + [2j + B]2 − 2[2� + B]2.

For fixed n there are eight nonzero terms in the double sum:

j � K(n, j, �)

n + 2 n + 1 8
n − 2 n − 1 8
n + 1 n 8n + 4 + 4B
n + 1 n + 1 −8n − 4 − 4B
n − 1 n −8n + 4 − 4B
n − 1 n − 1 8n − 4 + 4B

n n + 1 −16n − 8 − 8B
n n − 1 16n − 8 + 8B

.

On the other hand, the structure equation for [L2, R] is

[L2, R] = 8(L1L2 + L2L1) + 8L2
2 − 8

(
H − 3

4 + a2 + b2 + c2
)(

L2 − 3
2 + 2b2

)
+ 16

(
3
2 − b2 − c2

)
L1 + 16

(
3
2 − b2

)
L2 + 8(−b2 + c2). (15)
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Comparing (14) and (15) and equating coefficients of fn±2, fn±1, respectively, on both sides
of the resulting identities, we do not obtain new conditions. However, equating coefficients of
fn results in the condition

−(2n + B + 2)C(n, n + 1)C(n + 1, n) + (2n + B − 2)C(n − 1, n)C(n, n − 1) = C(n, n)2

+
(−2w − H − 3

4 + a2 − b2 − c2
)
C(n, n) + 2

(− 3
2 + b2 + c2

)
w + Q2, (16)

where

Q2 = (
H − 3

4 + a2 + b2 + c2
)(− 3

2 + 2b2
) − 9

2 + 3a2 + 5b2 + 4c2 − 2b4

− 2a2b2 − 2a2c2 − 2b2c2.

We can regard this as an inhomogeneous recurrence relating Fn and Fn−1 for the sequence

Fn = C(n, n + 1)C(n + 1, n), n = 0, 1, . . . , m.

Using (13) we find that the general solution is

Fn = C(n, n + 1)C(n + 1, n)

= A8(2n + B + 1)8 + A6(2n + B + 1)6 + A4(2n + B + 1)4 + A2(2n + B + 1)2 + A0

(2n + B + 2)(2n + B + 1)2(2n + B)
, (17)

where A2 is arbitrary and

4A0 =
[

1

2

(
H − 3

4
+ a2 + b2 + c2

)
(b2 − a2) +

a4

2
− a2

4
− b4

2
+

b2

4

]
,

A8 = 1

16
, A6 = 1

8
H − 1

32
− 1

8
(a2 + b2 + c2),

A4 = 1

256
+

H 2

16
− H

32
(1 + 8a2 + 8b2 − 8c2) +

1

16

(
a2 + b2 − 1

2
c2 + a4 + b4 + c4

)

+
1

4

(
−1

2
a2b2 + a2c2 + b2c2

)
.

We determine A2 by the requirement F−1 ≡ 0, so that

A8(B − 1)8 + A6(B − 1)6 + A4(B − 1)4 + A2(B − 1)2 + A0 = 0.

At this point we can already see that there are parameter-dependent raising and lowering
relations. Indeed(

R ∓ 4(2n + B ∓ 1)L2 ± 4C(n, n)
2n + B ∓ 1

−1/2 + a2 + b2 − (2n + B)2
L1

)
fn

= ∓ 8(2n + B)C(n ± 1, n)fn±1. (18)

For the quantum superintegrable system these operators provide differential recurrences for
products of Jacobi polynomials, the two-variable orthogonal polynomials of Karlin and
McGregor.

3. The Casimir operator

Before proceeding to solve the structure equations we clarify the significance of
equation (4). Consider the algebra S2′ generated by linear operators L1, L2,H , such that
R = [L1, L2], [H,Li] = 0 and conditions (3) hold. This will not be the quadratic algebra S2
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unless condition (4) also holds. Let S be the operator in S2′ defined by the right-hand side
of (4), and define the operator C for S2′ by C = S − R2, i.e.,

C = 8
3 {L1, L2, L3} − (16a1 + 12)L2

1 − (16a2 + 12)L2
2 − (16a3 + 12)L2

3

+ 52
3 ({L1, L2} + {L2, L3} + {L3, L1}) + 1

3 (16 + 176a1)L1

+ 1
3 (16 + 176a2)L2 + 1

3 (16 + 176a3)L3 + 32
3 (a1 + a2 + a3)

+ 48(a1a2 + a2a3 + a3a1) + 64a1a2a3 − R2. (19)

We know that the equations defining the quadratic algebra S2 are consistent. In particular,
there is a realization of S2 by functionally independent differential operators L1, L2,H . If
we compute the commutators [Li, C] in S2′ we can write them in the form

[Li, C] = RKi(L1, L2,H), i = 1, 2,

where Ki is a symmetric polynomial in its arguments. Similarly we can compute the
commutator [R,C] in S2′ to obtain [R,C] = K3(L1, L2,H), where K3 is a symmetric
polynomial in its arguments and [H,C] = 0. Since Kj must vanish for the superintegrable
system S2 it follows that Kj ≡ 0 in S2′, i.e., C is a Casimir operator: [Li, C] = [Li,H ] = 0.
Now suppose we have constructed a finite-dimensional irreducible representation of S2′ by
operators L1, L2,H . Then H and C must be multiples of the identity operator I. In particular,
C = µI . Then we will have a representation of the quadratic algebra S2 if and only if µ = 0.
Similar remarks hold for the infinite-dimensional representations that we construct.

4. Solution of the structure equations

We see from the last section that we will obtain a model of the superintegrable system S2 from
equations (13) and (17) if and only if the eigenvalue µ of the Casimir operator C vanishes.
To determine µ for finite-dimensional irreducible representations it is enough to compute
Cf0 = µf0, i.e., to evaluate C on the lowest weight vector f0. A straightforward computation,
using the fact that C(−1, 0)C(0,−1) = 0, leads to the result

µ = − (B − 1 + a + b)(B − 1 + a − b)(B − 1 − a + b)(B − 1 − a − b)

(B − 1)2

× (2H + 3 + 4c − 2a2 − 2b2 − 4B − 4cB + 2B2)

× (2H + 3 − 4c − 2a2 − 2b2 − 4B + 4cB + 2B2).

Thus, in order to achieve a model of the superintegrable system, we must have B equal to one
of the four roots: B = 1 ± a ± b. To be definite, we make the standard choice B = 1 + a + b.

Now we return to the solution of the structure equations. The final requirement that
uniquely determines the sequence Fn is the highest weight vector condition Fm ≡ 0, i.e.,

A8(2m + B + 1)8 + A6(2m + B + 1)6 + A4(2m + B + 1)4 + A2(2m + B + 1)2 + A0 = 0,

where m is a fixed nonnegative integer. This last equation is quadratic in the energy eigenvalue
H. If we solve this equation for H with general B we get two complicated solutions for the
quadratic algebra S2′ that involve square roots and for which in general µ �= 0. However, for
the case that mainly concerns us, namely the superintegrable case B = a + b + 1, the solution
simplifies considerably. The quantization condition is just

H = − 1
4 (4m + 2a + 2b + 2c + 5)(4m + 2a + 2b + 2c + 3). (20)
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There is a second solution with c replaced by −c. Taking the first solution as standard, we
obtain the following values for the expansion coefficients:

C(n, n) = 1

2
(2n + a + b + 2)(2n + a + b) − 1

2
[(2m + a + b + c + 2)2 + a2 − b2 − c2 − 1]

+
1

2

(a2 − b2)(a + b + 2m + 2)(a + b + 2c + 2m + 2)

(2n + a + b + 2)(2n + a + b)
, (21)

C(n, n + 1)C(n + 1, n) = 16(n + 1)(n− m)(n− c − m)(n + b + 1)(n + a + 1)(n + a + b + 1)

× (n + m + a + b + 2)(n + m + a + b + c + 2)

(2n + a + b + 3)(2n + a + b + 2)2(2n + a + b + 1)
. (22)

Note that only the product C(n, n + 1)C(n + 1, n) is determined uniquely. The values of the
individual factors depend on the normalization of the basis vectors fn. This result is in basic
agreement with the expansion formula for products of Lamé or Heun polynomials in terms
of products of Jacobi polynomials [44]. In that paper the coefficients were derived using
recurrence formulae for Jacobi polynomials (and there were some typographical errors in the
formulae). Here the derivation is directly from the structure formulae for the quadratic algebra.
The condition that there is an inner product with respect to which fn form an orthogonal basis
is C(n, n + 1)C(n + 1, n) > 0 for n = 0, 1, . . . , m − 1, and this is satisfied, for example, if
a, b, c > 0. Although these representations are finite dimensional for m a positive integer in
expression (20) for H (the bound-state energy levels) we can view (20) as a parameterization
for H corresponding to arbitrary values of m. In these cases our representation is infinite
dimensional but bounded below.

Now suppose we have an irreducible representation of S2′ of the above form that is
unbounded both above and below. Then conditions (17) and the expressions for A8, A6, A4, A0

will still hold and n will run over all of the integers: n = 0,±1,±2, . . . . We write the parameter
A2 in the form

A2 = ζ/64 − (A8(B − 1)8 + A6(B − 1)6 + A4(B − 1)4 + A0)/(B − 1)2, (23)

so that ζ �= 0, since otherwise we would have a representation bounded below. Now we must
have Cfn = µfn for all n, and comparing the coefficient of fn on both sides of the identity we
see that the action of C on the constant A2 term is to multiply it by 64, so

µ = ζ − (B − 1 + a + b)(B − 1 + a − b)(B − 1 − a + b)(B − 1 − a − b)

(B − 1)2

× (2H + 3 + 4c − 2a2 − 2b2 − 4B − 4cB + 2B2)

× (2H + 3 − 4c − 2a2 − 2b2 − 4B + 4cB + 2B2).

Thus, in order to achieve a model of the superintegrable system S2, we must choose ζ so that
µ = 0.

Due to the symmetry of the structure equations, it follows that the corresponding
eigenvalues of the operator L2 for finite-dimensional representations of S2 must be

ξn = −(2n + b + c + 1)2 − 1
2 + b2 + c2, n = 0, 1, . . . , m,

whereas the eigenvalues of the operator L3 must be

ηn = −(2n + a + c + 1)2 − 1
2 + a2 + c2, n = 0, 1, . . . , m.
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5. Wilson polynomials and a one-variable model for the quadratic algebra

The bounded below representations of the generic superintegrable system on the 2-sphere are
intimately connected with the Wilson polynomials. The connection between these polynomials
and the representation theory is the three-term recurrence formula for the action of L2 on an
L1-basis:

L2fn = C(n + 1, n)fn+1 + C(n, n)fn + C(n − 1, n)fn−1,

where the coefficients are given by (21) and (22). To understand the relationship we recall
some facts about the Wilson polynomials [45]. They are given by the expressions

pn(t
2) ≡ pn(t

2, α, β, γ, δ) = (α + β)n(α + γ )n(α + δ)n

× 4F3

( −n, α + β + γ + δ − n − 1, α − t, α + t

α + β, α + γ, α + δ
; 1

)
, (24)

where (a)n is the Pochhammer symbol and 4F3(1) is a generalized hypergeometric function
of unit argument. The polynomial pn(t

2) is symmetric in α, β, γ, δ. For fixed α, β, γ, δ > 0
the Wilson polynomials are orthogonal with respect to the inner product

〈pn, pn′ 〉 = 1

2π

∫ ∞

0
pn(−t2)pn′(−t2)

∣∣∣∣�(α + it)�(β + it)�(γ + it)�(δ + it)

�(2it)

∣∣∣∣
2

dt

= δnn′n!(α + β + γ + δ + n − 1)n

× �(α + β + n)�(α + γ + n)�(α + δ + n)�(β + γ + n)�(β + δ + n)�(γ + δ + n)

�(α + β + γ + δ + 2n)
.

(25)

The Wilson polynomials satisfy the three-term recurrence formula

t2pn(t
2) = K(n + 1, n)pn+1(t

2) + K(n, n)pn(t
2) + K(n − 1, n)pn−1(t

2), (26)

where

K(n + 1, n) = α + β + γ + δ + n − 1

(α + β + γ + δ + 2n − 1)(α + β + γ + δ + 2n)
,

K(n − 1, n) = n(α + β + n − 1)(α + γ + n − 1)(α + δ + n − 1)

(α + β + γ + δ + 2n − 2)(α + β + γ + δ + 2n − 1)

× (β + γ + n − 1)(β + δ + n − 1)(γ + δ + n − 1),

K(n, n) = α2 − K(n + 1, n)(α + β + n)(α + γ + n)(α + δ + n)

− K(n − 1, n)

(α + β + n − 1)(α + γ + n − 1)(α + δ + n − 1)
.

This formula, together with p−1 = 0, p0 = 1, determines the polynomials uniquely.
We define the operator L4 on the representation space of the superintegrable system by

the action

L4fn = K(n + 1, n)fn+1 + K(n, n)fn + K(n − 1, n)fn−1. (27)

Note that with the choices

α = −a + c + 1

2
− m, β = a + c + 1

2
,

γ = a − c + 1

2
, δ = a + c − 1

2
+ b + m + 2,

we have a perfect match with

C(n + 1, n) = 4K(n + 1, n), C(n − 1, n) = 4K(n − 1, n).
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The diagonal elements are related by

C(n, n) = 4K(n, n) − λn + H + 5
4 − 2a2 − b2 − 2c2,

where H is given by (20). Thus L2 = 4L4 − L1 + 5/4 − 2a2 − b2 − 2c2, or more simply

L3 = −4L4 − 1
2 + a2 + c2.

Now we can construct a one-variable model for the realization of these representations. The
L1-basis functions are the Wilson polynomials fn = pn(t) and L4 = t2 is the multiplication
by the transform variable. We can use the divided difference operator eigenvalue equation for
the Wilson polynomials

τ ∗τpn = n(n + α + β + γ + δ − 1)pn,

where

EAF(t) = F(t + A), τ = 1

2t
(E1/2 − E−1/2),

τ ∗ = 1

2t
[(α + t)(β + t)(γ + t)(δ + t)E1/2 − (α − t)(β − t)(γ − t)(δ − t)E−1/2]

to express the action of L1: L1 = −4τ ∗τ − 2(a + 1)(b + 1) + 1/2. See [46] for a simple
derivation. The inner product is (25).

When m is a nonnegative integer then α + β = −m < 0 so that the above continuous
Wilson orthogonality does not apply. The representation becomes finite dimensional and the
orthogonality is a finite sum

(α − γ + 1)m(α − δ + 1)n

(2α + 1)m(1 − γ − δ)m

m∑
k=0

(2α)k(α + 1)k(α + β)k(α + γ )k(α + δ)k

(1)k(α)k(α − β + 1)k(α − γ + 1)k(α − δ + 1)k

×pn((α + k)2)pn′((α + k)2) = δnn′

× n!(n + α + β + γ + δ − 1)n(α + β)n(α + γ )n(α + δ)n(β + γ )n(β + δ)n(γ + δ)n

(α + β + γ + δ)2n

.

(28)

Thus, the spectrum of L4 = t2 is the set {(α + k)2 : k = 0, . . . , m}. In the original quantum
mechanics eigenvalue problem the eigenfunctions of L1 and L4 each separate in suitable
versions of spherical coordinates to give Karlin–McGregor polynomials. It follows from
this derivation that the expansion coefficients relating one eigenbasis to the other are just the
general Racah polynomials.

These relations are derived in equations (3.4) and (4.2) of Wilson’s paper [45]. These finite
discrete polynomials, suitably renormalized, are called the Racah polynomials. Thus the Racah
polynomials are those associated with the bound-state energy levels of the S2 Schrödinger
eigenvalue equation, whereas the continuous Wilson polynomials are those associated with
the continuous (but infinitely degenerate) spectrum of the Schrödinger operator.

6. Heun-type operators

We can now obtain information about the spectrum of the Heun-type operator Q = L3 + kL1,
where k �= 0, 1, by using standard linear algebra arguments for the finite-dimensional
representations. This operator yields separable solutions of the Schrödinger eigenvalue
problem in terms of ellipsoidal coordinates. The solutions are expressed as products of
Heun polynomials. The computation of the expansion coefficients C(m, n) is the essential
step in the expansion of these Heun solutions in a Karlin–McGregor basis.
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If η is an eigenvalue of Q then, by considering the action of Q on an {fn}-basis, and using
the relation L3 = −4L4 − 1

2 + a2 + c2, we see that η must be a root of the eigenvalue equation
det(Q−ηI) = 0, where I is the (m+1)× (m+1) identity matrix and Q is the (m+1)× (m+1)

matrix with elements

Q(j, j) = −4K(j, j) − 1
2 + a2 + c2 + kλj , j = 0, . . . , m,

Q(h, h + 1) = −4K(h, h + 1), Q(h + 1, h) = −4K(h + 1, h), h = 0, . . . , m − 1,

on the diagonal, superdiagonal and subdiagonal, respectively, and all other elements zero.
Alternatively, we could use the one-variable model and relations (28) to express the action of
Q on an L3-basis and then write the determinental condition.

7. Conclusions and outlook

We have demonstrated explicitly the isomorphism between the quadratic algebra of the generic
quantum superintegrable system on the 2-sphere and the quadratic algebra generated by the
Wilson polynomials, and have worked out the basic theory for infinite- and finite-dimensional
representations of the algebra. It follows from our analysis that the quadratic algebras for
all 13 equivalence classes of 2D second-order quantum superintegrable systems should be
obtainable by appropriate limit processes from the quadratic algebra associated with the generic
superintegrable system on the 2-sphere, namely that generated by the Wilson polynomials.
However these limit processes are very intricate and each equivalence class exhibits a unique
structure, so each class is important for study by itself. Moreover, within each class of Stäckel
equivalent systems the structure of the quadratic algebra remains unchanged but the spectral
analysis of the generators for the algebra can change. Since the algebra QR(3) is itself a limit
as q → 1 of the algebra associated with the Askey–Wilson polynomials, this suggests the
existence of a q-version of second-order quantum superintegrability [28].

Another important issue concerns the quadratic algebras associated with 3D second-
order nondegenerate quantum superintegrable systems. In 2D, there are three functionally
independent generators for the algebra of symmetries and the algebra is isomorphic to QR(3)
or one of its limiting cases. In 3D there are five functionally independent, but six linearly
independent, generators. The algebra again closes at sixth order in the momenta, but in addition
there is an identity at eighth order that relates the six functionally dependent generators. The
representation theory of such quadratic algebras is much more complicated and remains to be
studied, as does the detailed relationship with multivariable orthogonal polynomials. Similarly
for nD nondegenerate systems there are (2n − 1) functionally independent but n(n + 1)/2
linearly independent generators for the quadratic algebra.
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